
The build2 Repository Interface

Copyright © 2014-2024 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the MIT

License.

Revision 0.17, June 2024

This revision of the document describes the build2 repository interface 0.17.x series.

Table of Contents

................... 1Preface

................ 11 Package Submission

............ 31.1 Submission Request Manifest

............ 41.2 Submission Result Manifest

.................. 42 Package CI

.............. 72.1 CI Request Manifest

.............. 72.2 CI Overrides Manifest

............... 82.3 CI Result Manifest

............... 83 Build Artifacts Upload

............. 113.1 Upload Request Manifest

............. 113.2 Upload Result Manifest

iRevision 0.17, June 2024 The build2 Repository Interface

Table of Contents

Preface

This document describes brep, the build2 package repository web interface. For the command

line interface of brep utilities refer to the brep-load(1), brep-clean(1),

brep-migrate(1), and brep-monitor(1) man pages.

1 Package Submission

The package submission functionality allows uploading of package archives as well as additional,

repository-specific information via the HTTP POST method using the multi­

part/form-data content type. The implementation in brep only handles uploading as well

as basic verification (checksum, duplicates) expecting the rest of the submission and publishing

logic to be handled by a separate entity according to the repository policy. Such an entity can be

notified by brep about a new submission as an invocation of the handler program (as part of the

HTTP request) and/or via email. It could also be a separate process that monitors the upload data

directory.

The submission request without any parameters is treated as the submission form request. If

submit-form is configured, then such a form is generated and returned. Otherwise, such a

request is treated as an invalid submission (missing parameters).

For each submission request brep performs the following steps.

1. Verify submission size limit.

The submission form-data payload size must not exceed submit-max-size.

2. Verify the required archive and sha256sum parameters are present.

The archive parameter must be the package archive upload while sha256sum must be

its 64 characters SHA256 checksum calculated in the binary mode.

3. Verify other parameters are valid manifest name/value pairs.

The value can only contain UTF-8 encoded Unicode graphic characters as well as tab (\t),

carriage return (\r), and line feed (\n).

4. Check for a duplicate submission.

Each submission is saved as a subdirectory in the submit-data directory with a 12-char­

acter abbreviated checksum as its name.

1Revision 0.17, June 2024 The build2 Repository Interface

Preface

5. Save the package archive into a temporary directory and verify its checksum.

A temporary subdirectory is created in the submit-temp directory, the package archive is

saved into it using the submitted name, and its checksum is calculated and compared to the

submitted checksum.

6. Save the submission request manifest into the temporary directory.

The submission request manifest is saved as request.manifest into the temporary

subdirectory next to the archive.

7. Make the temporary submission directory permanent.

Move/rename the temporary submission subdirectory to submit-data as an atomic oper­

ation using the 12-character abbreviated checksum as its new name. If such a directory

already exist, then this is a duplicate submission.

8. Invoke the submission handler program.

If submit-handler is configured, invoke the handler program passing to it additional

arguments specified with submit-handler-argument (if any) followed by the abso­

lute path to the submission directory.

The handler program is expected to write the submission result manifest to stdout and

terminate with the zero exit status. A non-zero exit status is treated as an internal error. The

handler program’s stderr is logged.

Note that the handler program should report temporary server errors (service overload,

network connectivity loss, etc.) via the submission result manifest status values in the

[500-599] range (HTTP server error) rather than via a non-zero exit status.

The handler program assumes ownership of the submission directory and can move/remove

it. If after the handler program terminates the submission directory still exists, then it is

handled by brep depending on the handler process exit status and the submission result

manifest status value. If the process has terminated abnormally or with a non-zero exit status

or the result manifest status is in the [500-599] range (HTTP server error), then the directory

is saved for troubleshooting by appending the .fail extension followed by a numeric

extension to its name (for example, ff5a1a53d318.fail.1). Otherwise, if the status is

in the [400-499] range (HTTP client error), then the directory is removed. If the directory is

left in place by the handler or is saved for troubleshooting, then the submission result mani­

fest is saved as result.manifest into this directory, next to the request manifest and

archive.

Revision 0.17, June 20242 The build2 Repository Interface

1 Package Submission

If submit-handler-timeout is configured and the handler program does not exit in

the allotted time, then it is killed and its termination is treated as abnormal.

If the handler program is not specified, then the following submission result manifest is

implied:

status: 200

message: package submission is queued

reference: <abbrev-checksum>

9. Send the submission email.

If submit-email is configured, send an email to this address containing the submission

request manifest and the submission result manifest.

10. Respond to the client.

Respond to the client with the submission result manifest and its status value as the

HTTP status code.

Check violations (max size, duplicate submissions, etc) that are explicitly mentioned above are

always reported with the submission result manifest. Other errors (for example, internal server

errors) might be reported with unformatted text, including HTML.

If the submission request contains the simulate parameter, then the submission service simu­

lates the specified outcome of the submission process without actually performing any externally

visible actions (e.g., publishing the package, notifying the submitter, etc). Note that the package

submission email (submit-email) is not sent for simulated submissions.

Pre-defined simulation outcome values are internal-error-text, inter­

nal-error-html, duplicate-archive, and success. The simulation outcome is

included into the submission request manifest and the handler program must at least handle

success but may recognize additional outcomes.

1.1 Submission Request Manifest

The submission request manifest starts with the below values and in that order optionally

followed by additional values in the unspecified order corresponding to the custom request

parameters.

archive: <name>

sha256sum: <sum>

timestamp: <date-time>

[simulate]: <outcome>

[client-ip]: <string>

[user-agent]: <string>

3Revision 0.17, June 2024 The build2 Repository Interface

1.1 Submission Request Manifest

The timestamp value is in the ISO-8601 <YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z form

(always UTC). Note also that client-ip can be IPv4 or IPv6.

1.2 Submission Result Manifest

The submission result manifest starts with the below values and in that order optionally followed

by additional values if returned by the handler program. If the submission is successful, then the

reference value must be present and contain a string that can be used to identify this submis­

sion (for example, the abbreviated checksum).

status: <http-code>

message: <string>

[reference]: <string>

2 Package CI

The CI functionality allows submission of package CI requests as well as additional, reposi­

tory-specific information via the HTTP GET and POST methods using the applica­

tion/x-www-form-urlencoded or multipart/form-data parameters encoding. The

implementation in brep only handles reception as well as basic parameter verification expecting

the rest of the CI logic to be handled by a separate entity according to the repository policy. Such

an entity can be notified by brep about a new CI request as an invocation of the handler

program (as part of the HTTP request) and/or via email. It could also be a separate process that

monitors the CI data directory.

The CI request without any parameters is treated as the CI form request. If ci-form is config­

ured, then such a form is generated and returned. Otherwise, such a request is treated as an

invalid CI request (missing parameters).

For each CI request brep performs the following steps.

1. Verify the required repository and optional package parameters.

The repository parameter is the remote bpkg repository location that contains the pack­

ages to be tested. If one or more package parameters are present, then only the specified

packages are tested. If no package parameters are specified, then all the packages present

in the repository (but excluding complement repositories) are tested.

Each package parameter can specify either just the package name, in which case all the

versions of this package present in the repository will be tested, or both the name and

version in the <name>/<version> form (for example, libhello/1.2.3.

Revision 0.17, June 20244 The build2 Repository Interface

2 Package CI

2. Verify the optional overrides parameter.

The overrides parameter, if specified, must be the CI overrides manifest upload.

3. Verify other parameters are valid manifest name/value pairs.

The value can only contain UTF-8 encoded Unicode graphic characters as well as tab (\t),

carriage return (\r), and line feed (\n).

4. Generate CI request id and create request directory.

For each CI request a unique id (UUID) is generated and a request subdirectory is created in

the ci-data directory with this id as its name.

5. Save the CI request manifest into the request directory.

The CI request manifest is saved as request.manifest into the request subdirectory

created on the previous step.

6. Save the CI overrides manifest into the request directory.

If the CI overrides manifest is uploaded, then it is saved as overrides.manifest into

the request subdirectory.

7. Invoke the CI handler program.

If ci-handler is configured, invoke the handler program passing to it additional argu­

ments specified with ci-handler-argument (if any) followed by the absolute path to

the CI request directory.

The handler program is expected to write the CI result manifest to stdout and terminate

with the zero exit status. A non-zero exit status is treated as an internal error. The handler

program’s stderr is logged.

Note that the handler program should report temporary server errors (service overload,

network connectivity loss, etc.) via the CI result manifest status values in the [500-599]

range (HTTP server error) rather than via a non-zero exit status.

The handler program assumes ownership of the CI request directory and can move/remove

it. If after the handler program terminates the request directory still exists, then it is handled

by brep depending on the handler process exit status and the CI result manifest status

value. If the process has terminated abnormally or with a non-zero exit status or the result

manifest status is in the [500-599] range (HTTP server error), then the directory is saved for

troubleshooting by appending the .fail extension to its name. Otherwise, if the status is in

the [400-499] range (HTTP client error), then the directory is removed. If the directory is left

5Revision 0.17, June 2024 The build2 Repository Interface

2 Package CI

in place by the handler or is saved for troubleshooting, then the CI result manifest is saved as

result.manifest into this directory, next to the request manifest.

If ci-handler-timeout is configured and the handler program does not exit in the

allotted time, then it is killed and its termination is treated as abnormal.

If the handler program is not specified, then the following CI result manifest is implied:

status: 200

message: CI request is queued

reference: <request-id>

8. Send the CI request email.

If ci-email is configured, send an email to this address containing the CI request mani­

fest, the potentially empty CI overrides manifest, and the CI result manifest.

9. Respond to the client.

Respond to the client with the CI result manifest and its status value as the HTTP status

code.

Check violations that are explicitly mentioned above are always reported with the CI result mani­

fest. Other errors (for example, internal server errors) might be reported with unformatted text,

including HTML.

If the CI request contains the interactive parameter, then the CI service provides the execu­

tion environment login information for each test and stops them at the specified breakpoint.

Pre-defined breakpoint ids are error and warning. The breakpoint id is included into the CI

request manifest and the CI service must at least handle error but may recognize additional ids

(build phase/command identifiers, etc).

If the CI request contains the simulate parameter, then the CI service simulates the specified

outcome of the CI process without actually performing any externally visible actions (e.g., testing

the package, publishing the result, etc). Note that the CI request email (ci-email) is not sent

for simulated requests.

Pre-defined simulation outcome values are internal-error-text, inter­

nal-error-html, and success. The simulation outcome is included into the CI request

manifest and the handler program must at least handle success but may recognize additional

outcomes.

Revision 0.17, June 20246 The build2 Repository Interface

2 Package CI

2.1 CI Request Manifest

The CI request manifest starts with the below values and in that order optionally followed by

additional values in the unspecified order corresponding to the custom request parameters.

id: <request-id>

repository: <url>

[package]: <name>[/<version>]

[interactive]: <breakpoint>

[simulate]: <outcome>

timestamp: <date-time>

[client-ip]: <string>

[user-agent]: <string>

[service-id]: <string>

[service-type]: <string>

[service-data]: <string>

[service-action]: <action>

The package value can be repeated multiple times. The timestamp value is in the ISO-8601

<YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z form (always UTC). Note also that client-ip

can be IPv4 or IPv6.

Note that some CI service implementations may serve as backends for third-party services. The

latter may initiate CI tasks, providing all the required information via some custom protocol, and

expect the CI service to notify it about the progress. In this case the third-party service type as

well as optionally the third-party id and custom state data can be communicated to the underlying

CI handler program via the respective service-* manifest values. Also note that normally a

third-party service has all the required information (repository URL, etc) available at the time of

the CI task initiation, in which case the start value is specified for the service-action

manifest value. If that’s not the case, the CI task is only created at the time of the initiation

without calling the CI handler program. In this case the CI handler is called later, when all the

required information is asynchronously gathered by the service. In this case the load value is

specified for the service-action manifest value.

2.2 CI Overrides Manifest

The CI overrides manifest is a package manifest fragment that should be applied to all the pack­

ages being tested. The contained values override the whole value groups they belong to, resetting

all the group values prior to being applied. Currently, only the following value groups can be

overridden:

build-email build-{warning,error}-email

builds build-{include,exclude}

*-builds *-build-{include,exclude}

*-build-config

7Revision 0.17, June 2024 The build2 Repository Interface

2.1 CI Request Manifest

For the package configuration-specific build constraint overrides the corresponding configuration

must exist in the package manifest. In contrast, the package configuration override

(*-build-config) adds a new configuration if it doesn’t exist and updates the arguments of

the existing configuration otherwise. In the former case, all the potential build constraint over­

rides for such a newly added configuration must follow the corresponding *-build-config

override.

Note that the build constraints group values (both common and build package configura­

tion-specific) are overridden hierarchically so that the [*-]build-{include,exclude}

overrides don’t affect the respective [*-]builds values.

Note also that the common and build package configuration-specific build constraints group

value overrides are mutually exclusive. If the common build constraints are overridden, then all

the configuration-specific constraints are removed. Otherwise, if any configuration-specific

constraints are overridden, then for the remaining configurations the build constraints are reset to

builds: none.

See Package Manifest for details on these values.

2.3 CI Result Manifest

The CI result manifest starts with the below values and in that order optionally followed by addi­

tional values if returned by the handler program. If the CI request is successful, then the refer­

ence value must be present and contain a string that can be used to identify this request (for

example, the CI request id).

status: <http-code>

message: <string>

[reference]: <string>

3 Build Artifacts Upload

The build artifacts upload functionality allows uploading archives of files generated as a byprod­

uct of the package builds. Such archives as well as additional, repository-specific information can

optionally be uploaded by the automated build bots via the HTTP POST method using the

multipart/form-data content type (see the bbot documentation for details). The imple­

mentation in brep only handles uploading as well as basic actions and verification (build session

resolution, agent authentication, checksum verification) expecting the rest of the upload logic to

be handled by a separate entity according to the repository policy. Such an entity can be notified

by brep about a new upload as an invocation of the handler program (as part of the HTTP

request) and/or via email. It could also be a separate process that monitors the upload data direc­

tory.

Revision 0.17, June 20248 The build2 Repository Interface

3 Build Artifacts Upload

For each upload request brep performs the following steps.

1. Determine upload type.

The upload type must be passed via the upload parameter in the query component of the

request URL.

2. Verify upload size limit.

The upload form-data payload size must not exceed upload-max-size specific for this

upload type.

3. Verify the required session, instance, archive, and sha256sum parameters are

present. If brep is configured to perform agent authentication, then verify that the chal­

lenge parameter is also present. See the Result Request Manifest for semantics of the

session and challenge parameters.

The archive parameter must be the build artifacts archive upload while sha256sum

must be its 64 characters SHA256 checksum calculated in the binary mode.

4. Verify other parameters are valid manifest name/value pairs.

The value can only contain UTF-8 encoded Unicode graphic characters as well as tab (\t),

carriage return (\r), and line feed (\n).

5. Resolve the session.

Resolve the session parameter value to the actual package build information.

6. Authenticate the build bot agent.

Use the challenge parameter value and the resolved package build information to authen­

ticate the agent, if configured to do so.

7. Generate upload request id and create request directory.

For each upload request a unique id (UUID) is generated and a request subdirectory is

created in the upload-data directory with this id as its name.

8. Save the upload archive into the request directory and verify its checksum.

The archive is saved using the submitted name, and its checksum is calculated and compared

to the submitted checksum.

9Revision 0.17, June 2024 The build2 Repository Interface

3 Build Artifacts Upload

9. Save the upload request manifest into the request directory.

The upload request manifest is saved as request.manifest into the request subdirec­

tory next to the archive.

10. Invoke the upload handler program.

If upload-handler is configured, invoke the handler program passing to it additional

arguments specified with upload-handler-argument (if any) followed by the abso­

lute path to the upload request directory.

The handler program is expected to write the upload result manifest to stdout and termi­

nate with the zero exit status. A non-zero exit status is treated as an internal error. The

handler program’s stderr is logged.

Note that the handler program should report temporary server errors (service overload,

network connectivity loss, etc.) via the upload result manifest status values in the [500-599]

range (HTTP server error) rather than via a non-zero exit status.

The handler program assumes ownership of the upload request directory and can

move/remove it. If after the handler program terminates the request directory still exists,

then it is handled by brep depending on the handler process exit status and the upload

result manifest status value. If the process has terminated abnormally or with a non-zero exit

status or the result manifest status is in the [500-599] range (HTTP server error), then the

directory is saved for troubleshooting by appending the .fail extension to its name. Other­

wise, if the status is in the [400-499] range (HTTP client error), then the directory is

removed. If the directory is left in place by the handler or is saved for troubleshooting, then

the upload result manifest is saved as result.manifest into this directory, next to the

request manifest.

If upload-handler-timeout is configured and the handler program does not exit in

the allotted time, then it is killed and its termination is treated as abnormal.

If the handler program is not specified, then the following upload result manifest is implied:

status: 200

message: <upload-type> upload is queued

reference: <request-id>

11. Send the upload email.

If upload-email is configured, send an email to this address containing the upload

request manifest and the upload result manifest.

Revision 0.17, June 202410 The build2 Repository Interface

3 Build Artifacts Upload

12. Respond to the client.

Respond to the client with the upload result manifest and its status value as the HTTP

status code.

Check violations (max size, etc) that are explicitly mentioned above are always reported with the

upload result manifest. Other errors (for example, internal server errors) might be reported with

unformatted text, including HTML.

3.1 Upload Request Manifest

The upload request manifest starts with the below values and in that order optionally followed by

additional values in the unspecified order corresponding to the custom request parameters.

id: <request-id>

session: <session-id>

instance: <name>

archive: <name>

sha256sum: <sum>

timestamp: <date-time>

name: <name>

version: <version>

project: <name>

target-config: <name>

package-config: <name>

target: <target-triplet>

[tenant]: <tenant-id>

toolchain-name: <name>

toolchain-version: <standard-version>

repository-name: <canonical-name>

machine-name: <name>

machine-summary: <text>

The timestamp value is in the ISO-8601 <YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z form

(always UTC).

3.2 Upload Result Manifest

The upload result manifest starts with the below values and in that order optionally followed by

additional values if returned by the handler program. If the upload request is successful, then the

reference value must be present and contain a string that can be used to identify this request

(for example, the upload request id).

status: <http-code>

message: <string>

[reference]: <string>

11Revision 0.17, June 2024 The build2 Repository Interface

3.1 Upload Request Manifest

	Preface
	1 Package Submission
	1.1 Submission Request Manifest
	1.2 Submission Result Manifest

	2 Package CI
	2.1 CI Request Manifest
	2.2 CI Overrides Manifest
	2.3 CI Result Manifest

	3 Build Artifacts Upload
	3.1 Upload Request Manifest
	3.2 Upload Result Manifest

