
The build2 Repository Interface

Copyright © 2014-2019 Code Synthesis Ltd

Permission is granted to copy, distribute and/or modify this document under the terms of the MIT

License.

Revision 0.9, February 2019

This revision of the document describes the build2 repository interface 0.9.x series.

Table of Contents

................... 1Preface

................ 11 Package Submission

............ 31.1 Submission Request Manifest

............. 41.2 Submission Result Manifest

.................. 42 Package CI

.............. 62.1 CI Request Manifest

............... 72.2 CI Result Manifest

iRevision 0.9, February 2019 The build2 Repository Interface

Table of Contents

Preface

This document describes brep, the build2 package repository web interface. For the command

line interface of brep utilities refer to the brep-load(1), brep-clean(1), and

brep-migrate(1) man pages.

1 Package Submission

The package submission functionality allows uploading of package archives as well as additional,

repository-specific information via the HTTP POST method using the multi­

part/form-data content type. The implementation in brep only handles uploading as well

as basic verification (checksum, duplicates) expecting the rest of the submission and publishing

logic to be handled by a separate entity according to the repository policy. Such an entity can be

notified by brep about a new submission as an invocation of the handler program (as part of the

HTTP request) and/or via email. It could also be a separate process that monitors the upload data

directory.

The submission request without any parameters is treated as the submission form request. If

submit-form is configured, then such a form is generated and returned. Otherwise, such a

request is treated as an invalid submission (missing parameters).

For each submission request brep performs the following steps.

1. Verify submission size limit.

The submission form-data payload size must not exceed submit-max-size.

2. Verify the required archive and sha256sum parameters are present.

The archive parameter must be the package archive upload while sha256sum must be

its 64 characters SHA256 checksum calculated in the binary mode.

3. Verify other parameters are valid manifest name/value pairs.

The value can only contain printable ASCII characters as well as tab (\t), carriage return

(\r), and line feed (\n).

4. Check for a duplicate submission.

Each submission is saved as a subdirectory in the submit-data directory with a 12-char­

acter abbreviated checksum as its name.

1Revision 0.9, February 2019 The build2 Repository Interface

Preface

5. Save the package archive into a temporary directory and verify its checksum.

A temporary subdirectory is created in the submit-temp directory, the package archive is

saved into it using the submitted name, and its checksum is calculated and compared to the

submitted checksum.

6. Save the submission request manifest into the temporary directory.

The submission request manifest is saved as request.manifest into the temporary

subdirectory next to the archive.

7. Make the temporary submission directory permanent.

Move/rename the temporary submission subdirectory to submit-data as an atomic oper­

ation using the 12-character abbreviated checksum as its new name. If such a directory

already exist, then this is a duplicate submission.

8. Invoke the submission handler program.

If submit-handler is configured, invoke the handler program passing to it additional

arguments specified with submit-handler-argument (if any) followed by the abso­

lute path to the submission directory.

The handler program is expected to write the submission result manifest to stdout and

terminate with the zero exit status. A non-zero exit status is treated as an internal error. The

handler program’s stderr is logged.

Note that the handler program should report temporary server errors (service overload,

network connectivity loss, etc.) via the submission result manifest status values in the

[500-599] range (HTTP server error) rather than via a non-zero exit status.

The handler program assumes ownership of the submission directory and can move/remove

it. If after the handler program terminates the submission directory still exists, then it is

handled by brep depending on the handler process exit status and the submission result

manifest status value. If the process has terminated abnormally or with a non-zero exit status

or the result manifest status is in the [500-599] range (HTTP server error), then the directory

is saved for troubleshooting by appending the .fail extension followed by a numeric

extension to its name (for example, ff5a1a53d318.fail.1). Otherwise, if the status is

in the [400-499] range (HTTP client error), then the directory is removed. If the directory is

left in place by the handler or is saved for troubleshooting, then the submission result mani­

fest is saved as result.manifest into this directory, next to the request manifest and

archive.

Revision 0.9, February 20192 The build2 Repository Interface

1 Package Submission

If submit-handler-timeout is configured and the handler program does not exit in

the allotted time, then it is killed and its termination is treated as abnormal.

If the handler program is not specified, then the following submission result manifest is

implied:

status: 200

message: package submission is queued

reference: <abbrev-checksum>

9. Send the submission email.

If submit-email is configured, send an email to this address containing the submission

request manifest and the submission result manifest.

10. Respond to the client.

Respond to the client with the submission result manifest and its status value as the

HTTP status code.

Check violations (max size, duplicate submissions, etc) that are explicitly mentioned above are

always reported with the submission result manifest. Other errors (for example, internal server

errors) might be reported with unformatted text, including HTML.

If the submission request contains the simulate parameter, then the submission service simu­

lates the specified outcome of the submission process without actually performing any externally

visible actions (e.g., publishing the package, notifying the submitter, etc). Note that the package

submission email (submit-email) is not sent for simulated submissions.

Pre-defined simulation outcome values are internal-error-text, inter­

nal-error-html, duplicate-archive, and success. The simulation outcome is

included into the submission request manifest and the handler program must at least handle

success but may recognize additional outcomes.

1.1 Submission Request Manifest

The submission request manifest starts with the below values and in that order optionally

followed by additional values in the unspecified order corresponding to the custom request

parameters.

archive: <name>

sha256sum: <sum>

timestamp: <date-time>

[simulate]: <outcome>

[client-ip]: <string>

[user-agent]: <string>

3Revision 0.9, February 2019 The build2 Repository Interface

1.1 Submission Request Manifest

The timestamp value is in the ISO-8601 <YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z form

(always UTC). Note also that client-ip can be IPv4 or IPv6.

1.2 Submission Result Manifest

The submission result manifest starts with the below values and in that order optionally followed

by additional values if returned by the handler program. If the submission is successful, then the

reference value must be present and contain a string that can be used to identify this submis­

sion (for example, the abbreviated checksum).

status: <http-code>

message: <string>

[reference]: <string>

2 Package CI

The CI functionality allows submission of package CI requests as well as additional, reposi­

tory-specific information via the HTTP GET and POST methods using the applica­

tion/x-www-form-urlencoded or multipart/form-data parameters encoding. The

implementation in brep only handles reception as well as basic parameter verification expecting

the rest of the CI logic to be handled by a separate entity according to the repository policy. Such

an entity can be notified by brep about a new CI request as an invocation of the handler

program (as part of the HTTP request) and/or via email. It could also be a separate process that

monitors the CI data directory.

The CI request without any parameters is treated as the CI form request. If ci-form is config­

ured, then such a form is generated and returned. Otherwise, such a request is treated as an

invalid CI request (missing parameters).

For each CI request brep performs the following steps.

1. Verify the required repository and optional package parameters.

The repository parameter is the remote bpkg repository location that contains the pack­

ages to be tested. If one or more package parameters are present, then only the specified

packages are tested. If no package parameters are specified, then all the packages present

in the repository (but excluding complement repositories) are tested.

Each package parameter can specify either just the package name, in which case all the

versions of this package present in the repository will be tested, or both the name and

version in the <name>/<version> form (for example, libhello/1.2.3.

Revision 0.9, February 20194 The build2 Repository Interface

2 Package CI

2. Verify other parameters are valid manifest name/value pairs.

The value can only contain printable ASCII characters as well as tab (\t), carriage return

(\r), and line feed (\n).

3. Generate CI request id and create request directory.

For each CI request a unique id (UUID) is generated and a request subdirectory is created in

the ci-data directory with this id as its name.

4. Save the CI request manifest into the request directory.

The CI request manifest is saved as request.manifest into the request subdirectory

created on the previous step.

5. Invoke the CI handler program.

If ci-handler is configured, invoke the handler program passing to it additional argu­

ments specified with ci-handler-argument (if any) followed by the absolute path to

the CI request directory.

The handler program is expected to write the CI result manifest to stdout and terminate

with the zero exit status. A non-zero exit status is treated as an internal error. The handler

program’s stderr is logged.

Note that the handler program should report temporary server errors (service overload,

network connectivity loss, etc.) via the CI result manifest status values in the [500-599]

range (HTTP server error) rather than via a non-zero exit status.

The handler program assumes ownership of the CI request directory and can move/remove

it. If after the handler program terminates the request directory still exists, then it is handled

by brep depending on the handler process exit status and the CI result manifest status

value. If the process has terminated abnormally or with a non-zero exit status or the result

manifest status is in the [500-599] range (HTTP server error), then the directory is saved for

troubleshooting by appending the .fail extension to its name. Otherwise, if the status is in

the [400-499] range (HTTP client error), then the directory is removed. If the directory is left

in place by the handler or is saved for troubleshooting, then the CI result manifest is saved as

result.manifest into this directory, next to the request manifest.

If ci-handler-timeout is configured and the handler program does not exit in the

allotted time, then it is killed and its termination is treated as abnormal.

5Revision 0.9, February 2019 The build2 Repository Interface

2 Package CI

If the handler program is not specified, then the following CI result manifest is implied:

status: 200

message: CI request is queued

reference: <request-id>

6. Send the CI request email.

If ci-email is configured, send an email to this address containing the CI request manifest

and the CI result manifest.

7. Respond to the client.

Respond to the client with the CI result manifest and its status value as the HTTP status

code.

Check violations that are explicitly mentioned above are always reported with the CI result mani­

fest. Other errors (for example, internal server errors) might be reported with unformatted text,

including HTML.

If the CI request contains the simulate parameter, then the CI service simulates the specified

outcome of the CI process without actually performing any externally visible actions (e.g., testing

the package, publishing the result, etc). Note that the CI request email (ci-email) is not sent

for simulated requests.

Pre-defined simulation outcome values are internal-error-text, inter­

nal-error-html, and success. The simulation outcome is included into the CI request

manifest and the handler program must at least handle success but may recognize additional

outcomes.

2.1 CI Request Manifest

The CI request manifest starts with the below values and in that order optionally followed by

additional values in the unspecified order corresponding to the custom request parameters.

id: <request-id>

repository: <url>

[package]: <name>[/<version>]

timestamp: <date-time>

[simulate]: <outcome>

[client-ip]: <string>

[user-agent]: <string>

The package value can be repeated multiple times. The timestamp value is in the ISO-8601

<YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z form (always UTC). Note also that client-ip

can be IPv4 or IPv6.

Revision 0.9, February 20196 The build2 Repository Interface

2.1 CI Request Manifest

2.2 CI Result Manifest

The CI result manifest starts with the below values and in that order optionally followed by addi­

tional values if returned by the handler program. If the CI request is successful, then the refer­

ence value must be present and contain a string that can be used to identify this request (for

example, the CI request id).

status: <http-code>

message: <string>

[reference]: <string>

7Revision 0.9, February 2019 The build2 Repository Interface

2.2 CI Result Manifest

	Preface
	1 Package Submission
	1.1 Submission Request Manifest
	1.2 Submission Result Manifest

	2 Package CI
	2.1 CI Request Manifest
	2.2 CI Result Manifest

